Radiation Control Office
Radiation Safety Training

Module 8 - X-Rays
Module 8 Outline

I. Radiation and Radioactivity
 A. Structure of the Atom
 B. Types of Radiation
 C. X-Ray Production

II. Dosimetry Units and Definitions
 A. Exposure
 B. Absorbed Dose
 C. Dose Equivalent

III. Dose Limits
 A. Occupational Worker
 B. Declared Pregnant worker
 C. General Member of the Public
Module 8 Outline

IV. Risk of Developing Cancer
 A. Three Mile Island Accident
 B. Chernobyl
 C. Risk Comparisons
 D. Acute Radiation Syndromes
 E. Recommendations

V. Warning Signs and Postings
 A. Radioactive Materials
 B. Radiation Areas

VI. Photon Interactions with Matter
 A. Raleigh and Compton Scattering
 B. Photoelectric Effect
 C. Pair Production
Module 8 Outline

VII. Operation of an X-Ray Machine
 A. Basic Concepts
 B. Definition of mAs
 C. Definition of kVp

VIII. Veterinary Teaching Hospital
 A. Locations of X-Ray Use
 B. Animal Holding
 C. Misuse of X-ray systems
 D. State Rules and Regulations

IX. Reducing X-Ray Exposure
 A. Time
 B. Distance
 C. Shielding
X. Calculating X-Ray Dose Equivalent
 A. Conversion Factors and Formula
 B. Example Calculation

XI. Monitoring Radiation Dose at CSU
 A. Personnel Dosimetry
 B. Requirements
Structure of the Atom

Nucleus
Neutrons
Protons
Electrons
Radioactivity

Definition.
Any spontaneous change in the state of a nucleus accompanied by the release of energy.

Major types
- Alpha (α) decay
- Beta (β) decay: β^−, β^+ and electron capture
- Gamma (γ) decay including internal conversion

X-rays have the same physical form as gamma photons
Definition - Any type of radiation possessing enough energy to eject an electron from an atom, thus producing an ion.

X-Rays and Gamma photons are both electromagnetic radiations that have the energy to ionize atoms.
Electromagnetic Radiation

Definition - An energy packet of waves created by an electromagnetic field.

Mass = 0
Travels at the speed of light ~ 300,000 km/s

Types - Radio waves, visible light, infra-red, ultraviolet, x-rays, gamma photons

Long Wavelength = low energy
Short Wavelength = high energy
Major Types of Ionizing Radiation

Alpha, Beta, Gamma

- Alpha Particle
- Beta Particle
- Gamma Photon and X-Rays

He $^+2$

Large Mass (nuclei)

Small Mass (subatomic particle)
Radiation Dosimetry Units

Exposure, X:

amount of charge produced anywhere in air by the complete stoppage of all electrons liberated by photons in an incremental volume of air per unit mass of air in that volume.

Standard International (SI) unit: \(\text{C/kg} \)

traditional unit: \(\text{roentgen (R)} \) \(1 \text{ R} = 2.58 \times 10^{-4} \text{ C/kg} \)

Exposure definition applies only to photons of energy less than or equal to 3 MeV interacting in air.
Radiation Dosimetry Units

Absorbed dose:

is the energy deposited by any type of ionizing radiation in a volume element of mass.

SI unit: gray (Gy)
traditional unit: rad

1 Gy = 100 rad

Absorbed dose definition applies to all forms of ionizing radiation in any material.
Relative Biological Effectiveness (RBE)

Absorbed dose from standard 250 kVp x-rays
dose from a radiation of interest

Both produce the same biological effect.

Quality factor (Q)

- radiation
- photon, β
- proton, neutron
- alpha

\[Q \]

1
10
20
Relative Biological Effectiveness

Ln (S)

Effect

Dose

Neutrons

Gamma Photons

Shoulder of curve indicates cell repair at low doses

No shoulder - no cell repair

Same Biological Effect

Different Dose from 2 types of radiation

D_n

D_γ
Radiation Dosimetry Units

Dose Equivalent

Dose equivalent: allows the description of the biological effect of an absorbed dose of a particular type of radiation or mixed radiations for the Human Body.

\[H = D Q \]

SI unit: sievert (Sv)

traditional unit: rem

1 Sv = 100 rem

For photons:

1 R ≈ 1 rad = 1 rem
Occupational Dose Limits for Radiation Workers

Whole Body Dose Limit = 5 rem or 5000 mrem

Extremity or Skin Dose Limit = 50 rem or 50,000 mrem

Lens of the Eye Limit = 15 rem or 15,000 mrem
Occupational Dose Limits

Dose Limit for Minors – Under 18 = 500 mrem

Dose Limit for Unborn Fetus = 500 mrem

Dose Limit for General Member of Public = 100 mrem
<table>
<thead>
<tr>
<th>Category</th>
<th>Radiation worker:</th>
<th>Individual in general population:</th>
<th>Compare to Background average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 rem/yr</td>
<td>0.1 rem/yr</td>
<td>0.36 rem/yr</td>
</tr>
<tr>
<td></td>
<td>50 mSv/yr</td>
<td>1 mSv/yr</td>
<td>3.6 mSv/yr</td>
</tr>
<tr>
<td>LD$_{50/30}$</td>
<td>450 rad</td>
<td></td>
<td>4.5 Gy</td>
</tr>
</tbody>
</table>
Risk Factors

For fatal cancer induction, whole-body irradiation: 0.0005/rem/person

Compare to non-radiation cancer fatality risk (U.S.A.): 0.223/person/lifetime

For hereditary effects expressed in the first two generations: 0.0001/rem/person

Compare to single generation non-radiation risk: 0.09/person
Some Risk Comparisons
One-in-a million chances of dying

<table>
<thead>
<tr>
<th>Situation</th>
<th>Cause of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 mrem</td>
<td>cancer from radiation</td>
</tr>
<tr>
<td>travelling 700 miles by air</td>
<td>accident</td>
</tr>
<tr>
<td>crossing the ocean by air</td>
<td>cancer from cosmic rays</td>
</tr>
<tr>
<td>traveling 60 miles by car</td>
<td>accident</td>
</tr>
<tr>
<td>living in Denver for 2 months</td>
<td>cancer from cosmic rays</td>
</tr>
<tr>
<td>living in a stone building for 2 months</td>
<td>cancer from radioactivity</td>
</tr>
<tr>
<td>working in a factory for 1.5 wks</td>
<td>accident</td>
</tr>
<tr>
<td>rock-climbing for 1.5 minutes</td>
<td>accident</td>
</tr>
<tr>
<td>smoking 1-3 cigarettes</td>
<td>cancer; heart-lung disease</td>
</tr>
<tr>
<td>working in a coal mine for 3 hr</td>
<td>accident</td>
</tr>
<tr>
<td>20 min being a man aged 60</td>
<td>mortality from all causes</td>
</tr>
<tr>
<td>living in New York City for 3 days</td>
<td>lung cancer, air pollution</td>
</tr>
</tbody>
</table>
Using Risk Coefficients

Example: Three Mile Island Accident exposures.

1. Fatal cancer risk in an individual.

Highest dose to a member of the public was 70 mrem.

\[
P_{\text{fatal cancer}} = (0.0005/\text{person x rem})(1 \text{ person})(70 \text{ mrem})(1 \text{ rem/1000mrem})
\]

\[
= 0.000035
\]

Compare to the probability of fatal cancer from other causes: \(0.223/\text{person/lifetime}\).
Using Risk Coefficients - Three Mile Island (continued)

2. Number of radiation induced fatal cancer in a population.

Average dose within 50 mile radius was 1.5 mrem. Population within 50 miles was 2,163,000.

\[N_{\text{fatal cancer}} = \left(\frac{0.0005}{\text{persons x rem}} \right)(2,163,000 \text{ persons}) \times (1.5 \text{ mrem})(1 \text{ rem/1000 mrem}) \]

=1.62 fatal cancers

Compare to the number of fatal cancers expected from other causes: 482,000.
Long Term Consequences of the Accident at the Chernobyl Nuclear Power Station on 26 April 1986

<table>
<thead>
<tr>
<th>Location</th>
<th>Population</th>
<th>Average Dose (rem)</th>
<th>Predicted Fatal Cancers</th>
<th>Background Fatal Cancers</th>
<th>% due to Chernobyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-site after accident</td>
<td>600,000</td>
<td>25 (?)</td>
<td>7500</td>
<td>72,000</td>
<td>10.42</td>
</tr>
<tr>
<td>Off-site within 30 km</td>
<td>135,000</td>
<td>12</td>
<td>810</td>
<td>16,200</td>
<td>5.00</td>
</tr>
<tr>
<td>Ukraine, Belarus and Russia</td>
<td>75 million</td>
<td>0.67</td>
<td>25,125</td>
<td>9 million</td>
<td>0.279</td>
</tr>
<tr>
<td>Other Europe</td>
<td>350 million</td>
<td>0.06</td>
<td>10,500</td>
<td>70 million</td>
<td>0.015</td>
</tr>
<tr>
<td>TOTAL</td>
<td>426 million</td>
<td>0.206</td>
<td>43,935</td>
<td>79 million</td>
<td>0.056</td>
</tr>
</tbody>
</table>
Radiation Syndromes and Injury

At low doses, Radiation Injury is a Statistical Probability

In all cases, the effects of radiation injury will be delayed

Somatic and genetic effect of low level radiation stochastic and non stochastic biological effects

Primary stochastic somatic biological effect of radiation is cancer.
Law of Bergonie and Tribondeau

The radiosensitivity of a population is directly proportional to their mitotic rate and inversely proportional to their degree of differentiation.

In other words, the more frequently cells divide, the more sensitive they are to radiation injury. The more specialized the cells are, the less sensitive they are to radiation injury.
Acute Radiation Syndromes
(Very high radiation doses)

Between 0 and 100 rads
Generally there is no clinically observable changes
Some nausea at the high end of range in more susceptible persons
Some blood changes above 25 rads

100 - 400 rads
The hematopoietic system is affected
Blood cell precursors are very radiosensitive
Gradual depression in blood count over days or weeks
Increased susceptibility to infection and hemorrhage
Most recover at lower end of range with some medical care
Acute Radiation Syndromes

(Continued)

400-1400 rads
Gastrointestinal system is affected
Cells lining the intestinal track are radiosensitive
Bacteria and toxic material gain entry into the bloodstream
Diarrhea, dehydration, infection, toxemia
Survival is unlikely at the upper end of range

Above 1400 rads
Cardiovascular and Central Nervous System is affected
Blood supply is impaired leading to nausea, vomiting, convulsions, or unconsciousness. There is no hope for survival

$\text{LD}_{50/30}$ is approximately 450 rads with modest medical treatment
Radiation Risk in Perspective

Health Physics Society Position Statement (March 1996):

• Radiogenic health effects (Primarily cancer) are observed in humans only at doses in excess of 10 rem delivered at high dose rates.

• Below this dose, estimation of adverse health effects is speculative since risk of health effects are either too small to be observed or are non-existent.

• Epidemiological studies have not demonstrated adverse health effects in individuals exposed to small doses (less than 10 rem) delivered in a period of many years.
Warning Sign
Standard Radiation Symbol

Meaning:
Ionizing Radiation Present in some Form
Warning Sign:
Caution Radioactive Materials
Danger, Radioactive Materials

Meaning:
Any “area or room in which there is used or stored an amount of licensed or registered material exceeding 10 times the quantity of such material specified in Appendix C”
Warning Sign: Caution, Radiation Area

Meaning:
“Any area, accessible to individuals, in which radiation levels could result in an individual receiving a dose equivalent in excess of 5 mrem (0.05 mSv) in 1 hour at 30 centimeters from the source of radiation or from any surface that the radiation penetrates.”

Reach your yearly whole body limit of 5 rem in ~1000 hours (42 days)
Warning Sign:
Caution, High Radiation Area
Danger, High radiation Area

Reach your yearly whole body limit of 5 rem in ~50 hours (2.1 days)

Meaning:
“an area, accessible to individuals, in which radiation levels could result in an individual receiving a dose equivalent in excess of 100 mrem (1 mSv) in 1 hour at 30 centimeters from any source of radiation or from any surface that the radiation penetrates.”
Warning Sign:
Grave Danger, Very High Radiation Area

Meaning:
“an area, accessible to individuals, in which radiation levels could result in an individual receiving an absorbed dose in excess of 500 rem (5 Gy) in 1 hour at 1 meter from a source of radiation or from any surface that the radiation penetrates.”

Reach your yearly whole body limit of ~5 rem in < 36 seconds
Warning Sign:
Caution, Airborne Radioactivity Area
Danger, Airborne Radioactivity Area

Meaning:
Any area with airborne activity
Radiation and Radioactivity
Radioactivity is a spontaneous change in the state of a nucleus with the release of energy.

The radiation emitted carry the energy released in radioactive decay.

Radiation refers to the particle(s) and photons emitted in the process of radioactive decay.

When radiation(s) interact with matter they may deposit all or part of their energy.

There are four types of photon interactions with matter

Coherent scattering (Rayleigh scattering)

Incoherent Scattering (Compton scattering)

Photoelectric Effect

Pair Production
Coherent Scattering
(Raleigh Scattering)
Incoherent Scattering
(Compton Scattering)
Photoelectric Effect
Production of X-Rays

Atom

X-Ray
Pair Production

Photon Energy = 1.022 MeV

Positron (+) charge

Electron (-) charge

511 keV
Pair Production

$E = mc^2$

Two photons travel in exactly opposite directions

511 keV
Main Production of X-Rays

Bremsstrahlung Radiation

An electron passing near a nucleus has its direction altered by the Coulombic force resulting from the positively charged nucleus.

A change in direction of motion is equivalent to a change in energy and momentum of the electron.

Accelerated electrons may lose energy by emitting electromagnetic energy (X-Rays).
Bremsstrahlung Radiation

Electron further away from nucleus
Coulombic force is weak
Less energy is released in photon
Longer wavelength

Electron passes closer to nucleus
Coulombic force is stronger
More energy is released in photon
Shorter wavelength
How X-Ray Machines Work

1. Wire Filament
2. Cathode - Electrons
3. Vacuum Tube
4. Anode - Target (W) (Al)
5. Tube Leakage
6. Filter
7. Power

The process involves a wire filament that heats up and emits electrons. These electrons travel through a vacuum tube to an anode, which is a target made of tungsten (W) and aluminum (Al). The electrons hit the anode, causing it to emit X-rays. The X-rays can be filtered through a filter to reduce unwanted radiation.
Milliamperage - Seconds (mA-s)

Milliamperage (mA) controls the temperature of the filament. As the mA increases, the temperature of the filament increases and the filament produces more electrons.

The number of Electrons and the period set for their release determine how many x-rays are available. Thus, the Milliamperage-seconds (mA-s) controls the number of x-rays that are produced.
Kilovoltage Peak

Electron *speed* determines the penetrating power of the x-rays

The deeper the penetration of the electron into the (target) electron shell, the higher the energy of the photon released

High voltage produces x-rays with greater penetrating power and intensity

Thus, the penetrating power of x-rays is controlled by the Kilovoltage Peak (kVp)
Some VTH Sources

X-Ray Machine

X-Ray Machine
Basic Design of X-ray or Irradiator Facility

A Baffle protects the occupational worker from scatter radiation by using appropriate shielding geometries.
Auxillary Support
Animal Holding

Mechanical holding devices shall be used when the technique permits. The written safety procedures shall list individual projections where holding devices cannot be utilized. Written safety procedures shall indicate the requirements for selecting a holder and the procedure the holder shall follow. The holder has to be protected as required by RH 6.3.1.1.5
Sources of X-Ray Exposure

Animal Holding

Direct Beam

Tube Leakage

Scatter Radiation
Personal Protective Equipment

- Lead Goggles
- Thyroid Collar
- Lead Apron
- Lead Gloves

Protective Devices are for Scatter Radiation **ONLY**

No one is permitted to be exposed to the primary beam
Part 6 - X-Rays in the Healing Arts
If the operator cannot be protected with lead shielding, then the operator must be positioned at least 2 meters (6 feet) from the x-ray tube. This requires a remote cord with exposure control.
State Rules and Regulations

Misuse of a VTH X-Ray Machine

Human Exposure Is Strictly Prohibited !!!

Misuse of the x-ray machines in this manner will result in Administrative Action against the Individual
External Radiation Exposure

Definition: Exposure of the body from radiation originating outside of the body

Level of Hazard and Control Depend Upon:

1. Type of Radiation (Alpha, Beta, Gamma)
2. Energy of the Radiation (Low or high energy)
3. Dose Rate (Low or high dose rate)

Short period of time can cause cancer
Long period of time can cure cancer
Reducing External Radiation Exposure

- **Time:**

 reduce time spent in radiation area

- **Distance:**

 stay as far away from the radiation source as possible

- **Shielding:**

 interpose appropriate materials between the source and the body
Reduction of Exposure Time

Training should include a full rehearsal of the procedures outside of the radiation area to improve efficiency and confidence.

Power and automated equipment
Lab design allows easy access to the equipment and components

Reduce the number of shots taken by one person/ Rotate personnel
Distance from the Source

Basic principle: Point Source without Shielding
Inverse square law applies:

\[\dot{D}_2 = \dot{D}_1 \left(\frac{d_1^2}{d_2^2}\right) \]

\(\dot{D}_1 \) and \(\dot{D}_2 \) = dose rates at distances \(d_1 \) and \(d_2 \)

\(\dot{D}_1, d_1, 10 \) rem \quad \dot{D}_2, d_2, 2.5 \) rem

Okay if the distance between the source and point of interest is at least five (5) times the greatest dimension of the source.
Control of Distance

- remote operation
 manipulating devices, remote handling tools

- moving away from sources
 remain near a source only when it is necessary
 Leave the x-ray suite if you are not needed for the x-ray procedure
Shielding

Basic principle:
Place materials between the source and person to absorb some or all of the radiation

- α radiation: no shield required for external exposures; dead skin layer stops α’s

- β radiation: ranges of meters in air; some can penetrate dead skin layer; thin plexiglass shields adequate

- \mathbf{x} and γ radiation: highly penetrating, best shields are high atomic number materials (lead)
Do not confuse photon energy with kVp.

kVp is the potential applied to electrons to give them kinetic energy to create photons.

Photons carry energy that is measured in kiloelectron volts or keV.
Converting a X-Ray Exposure Rate to Dose Equivalent Dose Rate

Three depths

1.0 cm used for “Deep” absorbed dose
0.3 cm used for dose to lens of the “Eye”
0.007 cm used for “Shallow” or skin dose

Dose Equivalent rate (rem/hr)

\[\dot{H} = C_d \dot{X} \]

Exposure Rate (R/hr)

Conversion factor from table (rem/R)
Rem/R Conversion Factors (C_d)

<table>
<thead>
<tr>
<th>Photon Energy</th>
<th>Conversion Factors at Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0 cm (“Deep”)</td>
</tr>
<tr>
<td>15</td>
<td>0.28</td>
</tr>
<tr>
<td>20</td>
<td>0.58</td>
</tr>
<tr>
<td>30</td>
<td>1.00</td>
</tr>
<tr>
<td>40</td>
<td>1.28</td>
</tr>
<tr>
<td>50</td>
<td>1.46</td>
</tr>
<tr>
<td>60</td>
<td>1.47</td>
</tr>
<tr>
<td>70</td>
<td>1.45</td>
</tr>
<tr>
<td>80</td>
<td>1.43</td>
</tr>
<tr>
<td>90</td>
<td>1.41</td>
</tr>
<tr>
<td>100</td>
<td>1.39</td>
</tr>
<tr>
<td>110</td>
<td>1.37</td>
</tr>
<tr>
<td>120</td>
<td>1.35</td>
</tr>
<tr>
<td>130</td>
<td>1.33</td>
</tr>
<tr>
<td>140</td>
<td>1.32</td>
</tr>
<tr>
<td>150</td>
<td>1.30</td>
</tr>
<tr>
<td>662</td>
<td>1.03</td>
</tr>
</tbody>
</table>
Worse Case Dose Scenario for X-Rays

\[H = C_d X \]

From the rem/R conversion factors, a 60 keV photon at shallow depth produces the highest factor of: 1.52

A worse case dose would simply multiply the exposure rate by the conversion factor of 1.52
What is the deep dose equivalent if a radiation worker is accidentally exposed to 40 keV photons for 2 minutes? The Exposure rate was measured at 100 R/hr.

\[H = C_d X \]

\[H = (1.28 \text{ rem/R}) \times (100 \text{ R/hr}) = 128 \text{ rem/hr} \]

\[H = (128 \text{ rem/hr}) \times (2m/60m/hr) = 4.27 \text{ rem} \]
Monitoring of External Radiation Dose

• Primary CSU dosimeter is the new Luxel crystal
 • Sensitive to gamma and hard beta radiations
• Provides CSU RSO dose information on a monthly or quarterly basis
• Does not provide information during an exposure to radiation
• Supplementary dosimeters - pocket dosimeters / radiation survey instruments
Monitoring of External Radiation Dose

- Individual responsibility to change badge

Badge Exchange
- Not Contaminated
- Badge Book Location
- Change Out Procedure
Body Badge Location

Between Neck and Waist
Closest to Source of Radiation
Ring Badge Location
Pocket Dosimeter

Same Location As Body Badge
Always wear in conjunction with body badge
Shock sensitive

Allows for a “real” time dose reading

Can be very inaccurate due to it’s sensitivity
Questions ???

Please Feel Free to Contact: The Radiation Control Office

133 General Services Bld.
CSU Main Campus
Fort Collins, CO. 80523-6021

Environmental Health Services: 491-6745

Radiation Safety Officer: 491-3736
Alt. Radiation Safety Officer: 491-3928
Radiation Control Technician: 491-4835
VTH Radiation Technician: 491-4439